Using human observer eye movements in automatic image classifiers
نویسندگان
چکیده
We explore the way in which people look at images of different semantic categories (e.g., handshake, landscape), and directly relate those results to computational approaches for automatic image classification. Our hypothesis is that the eye movements of human observers differ for images of different semantic categories, and that this information can be effectively used in automatic content-based classifiers. First, we present eye tracking experiments that show the variations in eye movements (i.e., fixations and saccades) across different individuals for images of 5 different categories: handshakes (two people shaking hands), crowd (cluttered scenes with many people), landscapes (nature scenes without people), main object in uncluttered background (e.g., an airplane flying), and miscellaneous (people and still lives). The eye tracking results suggest that similar viewing patterns occur when different subjects view different images in the same semantic category. Using these results, we examine how empirical data obtained from eye tracking experiments across different semantic categories can be integrated with existing computational frameworks, or used to construct new ones. In particular, we exa mine the Visual Apprentice, a system in which image classifiers are learned (using machine learning) from user input as the user defines a multiple level object definition hierarchy based on an object and its parts (scene, object, object-part, perceptual area, region), and labels examples for specific classes (e.g., handshake). The resulting classifiers are applied to automatically classify new images (e.g., as handshake/non-handshake). Although many eye tracking experiments have been performed, to our knowledge, this is the first study that specifically compares eye movements across categories, and that links categoryspecific eye tracking results to automatic image classification techniques.
منابع مشابه
Using Human Observers' Eye Movements in Automatic Image Classifiers
We explore the way in which people look at images of different semantic categories (e.g., handshake, landscape), and directly relate those results to computational approaches for automatic image classification. Our hypothesis is that the eye movements of human observers differ for images of different semantic categories, and that this information can be effectively used in automatic content-bas...
متن کاملAutomatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers
Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...
متن کاملReconsidering Yarbus: A failure to predict observers’ task from eye movement patterns
In 1967, Yarbus presented qualitative data from one observer showing that the patterns of eye movements were dramatically affected by an observer's task, suggesting that complex mental states could be inferred from scan paths. The strong claim of this very influential finding has never been rigorously tested. Our observers viewed photographs for 10s each. They performed one of four image-based ...
متن کاملOMR-Arena: Automated Measurement and Stimulation System to Determine Mouse Visual Thresholds Based on Optomotor Responses
Measurement of the optomotor response is a common way to determine thresholds of the visual system in animals. Particularly in mice, it is frequently used to characterize the visual performance of different genetically modified strains or to test the effect of various drugs on visual performance. Several methods have been developed to facilitate the presentation of stimuli using computer screen...
متن کاملOn The Bottom-Up and Top-Down Influences of Eye Movements
To cope with the enormous amount of visual information in our everyday environment, the human visual system uses a mechanism of visual attention and saccadic eye movements to filter and process only the relevant information. In this study, we try to analyze and model the control of these eye movements. Eye movements are controlled by bottom-up and topdown mechanisms. The role of these two mecha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001